度为朔距日一百八十度为望皆为东西同经
其入交也正当黄道而无纬度是为南北同纬入交而非朔望则同纬而不同经 【黄白距纬五度月入交则正当黄道无距纬度而不得食
者月当黄道而日在其东西不同经度也】 朔望而不入交则同经而不同纬 【朔望时日月距交同度无东西之异其不得食者日距交既
远则日月两半径南北不相切是不同纬也】 皆无食其有食者必经纬同度也合朔时月在日与地之闲一线参直则月掩日光而日为之食
望时地在日与月之闲一线参直日照地影是为闇虚月入其中则为月食也月去日远去人近合朔时但能蔽人目而不能上侵日体故食分
时刻南北东西异视月入闇虚则九有同观但时刻有先后耳所以推算之法日食较月食为繁密也
(臣)等又按月日交食必在朔望而朔望有平实之异平朔望即古经朔望实朔望即古定朔望也日月两本轮心同度为平朔望而日
用实体在轮周不必同度故必以两均轮之盈缩迟疾差为加减之均 【月有本轮均轮次轮次均轮四轮测朔望只用本轮均轮余二轮不
用】 凡实行在平行之前为加均实行在平行之后为减均同名相消异名相从即得平朔望距实朔望之度其实行在平行之前为减在平行
之后为加以之变时加减平朔望为实朔望 【古谓之加减差】 然而犹平时非用时也盖实朔望推算时刻以平行所临之时依黄道而定
而平行实行既有盈缩差则时刻亦有增减又时刻以赤道为主而黄赤有升度差则时刻亦有进退故必以均数与升度二时差变为时分以
加减实朔望之时刻为朔望用时也
(臣)等又按月食生于地影而地影有大小之不同凡食分之浅深食时之久暂由之凡太阳距地远则影长太阳距地近则影短又地
影为尖圆体月在最卑时距地近则过影之粗处其径大行最高距地远则过影之细处其径小也故食分惟以视黄白距纬之多少定之距纬
愈少太阴心与地影心相去愈近则太阴入影愈深故用太阴与地影两半径相并而与距纬相较其并径大于距纬之较即月食之分也其时
刻之久暂则生于入影之浅深过影之迟速盖距纬有宽狭宽则入影浅而时刻少狭则入影深而时刻多又月与影之半径时有小大月大影
小则过影速而时刻少月小影大则过影迟而时刻多抑且自行有迟疾迟则出影迟疾则出影速故虽距纬同半径同而自行不同即时刻亦
异也至于见食先后则以人所居地面不同各以日中为南为子午日出入为东西故亏复各限亦因之而异也
(臣)等又按日食有三限时刻求之最难三限者初亏食甚复圆也三限时刻则用时近时真时也三者虽为三限所同而尤以食甚之
时刻为急太阳距交之黄道经度与太阴距交之白道经度等是为东西同经即为实朔其距交之度为实朔交周然此时太阳与太阴相距犹
远惟自白极过太阳作经圈与白道成直角太阴实经行至此直角之点与太阳相距最近是为食甚用时其距交之经度为食甚交周其相距
之纬度为食甚距纬于是以实朔交周与食甚交周相减得升度差加减实朔用时为食甚用时次以食甚用时求得东西差加减食甚用时为
食甚近时又以食甚近时求得东西差与用时东西差相较得视行然后以视行与用时东西差比例得时分加减食甚用时为食甚真时盖食
甚用时者乃在天实行日月相掩最深之时刻食甚真时者乃人目所见日月相掩最深之时刻而食甚近时者所以定视行以求用时与真时
相距之时分者也
(臣)等又按新法历书推算日食三差以黄平象限为本盖大圈相交必互相均剖为两半分故黄赤二道之交地平也必皆有半周百
八十度在地平之上其势似虹若中剖虹腰则为半周最高之处而两旁各九十度故谓之九十度限也此九十度限黄赤道并有之然在赤道
则其度常居正午以其两端交地平常在卯正酉正也黄道则不然其九十度限或在午正之东或在午正之西时时不等其两端交地亦必不
常在卯正酉正而时时不等故也盖黄道在地平半周之度自此中分则两皆象限若从天顶作线过此以至地平必成三角而其势平过如十
字故又曰黄平象限也黄平象限之在午正每日必有二次者太阳东升西没成一昼夜则周天三百六十度皆过午正而西故每日必有冬至
夏至在午正时此时此刻即黄平象限与子午规合而为一每日只有二次也自此二次之外二至必不在午正而黄平象限亦必不在二至矣
今术改用白平象限盖三差并生于太阴而太阴之经纬度为白道经纬度较之用黄道为加密也
(臣)等又按日食三差一曰高下差一曰东西差一曰南北差东西南北二差又由高下差而生盖食甚用时以地心立算人自地面视
之遂有地半径差而太阳地半径差恒小太阴地半径差恒大于太阴地半径差内减太阳地半径差始为太阴高下差高下差既变真高为视
高故经度之东西纬度之南北皆因之而变也新法历书求三差以黄平象限为本盖以太阴在黄平象限东者视经度恒差而东太阴在黄平
象限西者视经度恒差而西差而东者时刻宜减差而西者时刻宜加故日食之早晚必征之东西差而后可定也北极出地二十三度半以上
者黄平象限恒在天顶南太阴