科学与文明 -05-古籍收藏 - -06-史藏 -01-正史

5-元史-明-宋濂-第293页

乘其日盈缩之损益率,万约之,应益者盈加缩减,应损者盈减缩加,其副满百为分,分满百为度,以加其日夜半日度,命之,各得其日加时日躔黄道宿次。若先于历中注定每日夜半日度,即用此法为准也。
  求定朔弦望加时月度
  凡合朔加时日月同度,其定朔加时黄道日度即为定朔加时黄道月度;弦望,各以弦望度加定朔弦望加时黄道日度,依宿次去之,即得定朔弦望加时黄道月度及分秒。
  求夜半午中入转
  置中朔入转,以中朔小余减之,为中朔夜半入转。又中朔小余,与半法相减之,余以加减中朔加时入转,中朔少如半法,加之;多如半法,减之。  为中朔午中入转。若定朔大余有进退者,亦加减转日,否则因中为定,每日累加一日,满转终日及余秒,去命如前,各得每日夜半午中入转。求夜半,因定朔夜半入转累加之;求午中,因定朔午中入转累加之;求加时入转者,如求加时入气之术法。
  求加时及夜半月度
  置其日入转算外转定分,以定朔弦望小余乘之,如日法而一,为加时转分;分满百为度。  减定朔弦望加时月度,为夜半月度。以相次转定分累加之,即得每日夜半月度。或朔至弦望,或至后朔,皆可累加之。然近则差少,远则差多。置所求前后夜半相距月度为行度,计其日相距入转积度,与行度相减,余以相距日数除之,为日差行度。多日差加每日转定分行度,少日差减每日转定分而用之可也。欲求速,即用此数。欲究其微,而可用后术。
  求晨昏月度
  置其日晨分,乘其日算外转定分,日法而一,为晨转分;用减转定分,余为昏转分。又以朔望定小余,乘转定分,日法而一,为加时分,以减晨昏转分,为前;不足,覆减之,为后;乃前加后减加时月度,即晨昏月度所在宿度及分秒。
  求朔弦望晨昏定程
  各以其朔昏定月减上弦昏定月,余为朔后昏定程。以上弦昏定月,减望昏定月,余为上弦后昏定程。以望晨定月,减下弦晨定月,余为望后晨定程。以下弦晨定月,减后朔晨定月,余为下弦后晨定程。
  求每日转定度
  累计每定程相距日下转积度,与晨昏定程相减,余以相距日数除之,为日差;定程多,加之;定程少,减之。  以加减每日转定分,为转定度;因朔弦望晨昏月,每日累加之,满宿次去之,为每日晨昏月度及分秒。凡注历,朔日已后注昏月,望后一日注晨月。  古历有九道月度,其数虽繁,亦难削去,具其术。
  求正交日辰
  置交终日及余秒,以其月经朔加时入交泛日及余秒减之,余为平交入其月经朔加时后日算及余秒;中朔同。  以加其月中朔大小余,其大余命壬戌算外,即得平交日辰及余秒。求次交者,以交终日及余秒加之,如大余满纪法,去之,命如前,即得次平交日辰及余秒也。
  求平交入转朓朒定数
  置平交小余,加其日夜半入转,余以乘其日损益率,日法而一,所得,以损益其日下朓朒积,为定数。
  求平交日辰
  置平交小余,以平交入转朓朒定数朓减朒加之,满与不足,进退日辰,即得正交日辰及余秒;与定朔日辰相距,即得所在月日。
  求中朔加时中积
  各以其月中朔加时入气日及余,加其气中积及余,其日命为度,其余,以日法退除为分秒,即其月中朔加时中积度及分秒。
  求正交加时黄道月度
  置平交入中朔加时后日算及余秒,以日法通日内余进二位,如三万九千一百二十一为度,不满,退除为分秒,以加其月中朔加时中积,然后以冬至加时黄道日度加而命之,即得其月正交加时月离黄道宿度及分秒。如求次交者,以交中度及分秒加而命之,即得所求。
  求黄道宿积度
  置正交加时黄道宿全度,以正交加时月离黄道宿度及分秒减之,余为距后度及分秒;以黄道宿度累加之,即各得正交后黄道宿积度及分秒。
  求黄道宿积度入初末限
  置黄道宿积度及分秒,满交象度及分秒去之,余在半交象以下为初限;以上者,减交象度,余为末限。入交积度、交象度,并在《交会篇》中。
  求月行九道宿度
  凡月行所交,冬入阴历,夏入阳历,月行青道;冬至夏至后,青道半交在春分之宿,当黄道东;立冬立夏后,青道半交在立春之宿,当黄道东南;至所冲之宿,亦皆如之也。宜细推。  冬入阳历,夏入阴历,月行白道;冬至夏至后,白道半交在秋分之宿,当黄道西;立冬立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿,亦如之也。  春入阳历,秋入阴历,月行硃道;春分秋分后,硃道半交在夏至之宿,当黄道南;立春立秋后,硃道半交在立夏之宿,当黄道西南;至所冲之宿,亦如之也。  春入阴历,秋入阳历,月行黑道。春分秋分后,黑道半交在冬至之宿,当黄道北;立春立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿,亦如之也。  四时离为八节,至阴阳之所交,皆与黄道相会,故月行有九道。各以所入初入初末限度及分,减一百一度,余以所入初入初末限度及